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Magnetoplasmons in a quasi-one-dimensional quantum wire 
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Abstract. Plasmon spectra in a quasi-ID quantum wire under a transverse magnetic field are 
calculated within the random phase approximation @PA) in the iong-wavelen@b limit. We find 
interesting collective behaviours corresponding to the edge state electrons in both intrasubbmd 
and intenubband (between occupied subbands) excitations. The various plasmon modes show 
anomalous magnetic field dependences. The intrasubband and some segments of the intersubbmd 
excitation frequencies decrease with increasing fieid. These resuits are in good agreement With 
experiment. 

1. Introduction 

Plasmon excitations of a quasi-one-dimensional (quasi- ID) electron gas under a strong 
magnetic field have recently been studied extensively [ 1-31, These elementary excitations, 
so-called magnetoplasmons, have become an important aspect of many-body physics and 
play significant roles in both integer and fractional quantum Hall effects (QHE) [U]. 
It is well known that edge states are crucial in determining transport properties of such 
systems 171. As observed in [1-31, and as will be shown in this paper, magnetoplasmons 
are also closely associated with edge states. 

Since the edge states are more significant in qUaSi-lD geometries, qUaSi-ID quantum 
wires provide a natural ground for studying magnetoplasmon excitations. Experimentally, 
the edge magnetoplasmons can be studied by inelastic scattering 111, far infrared 
spectroscopy [Z], and radio frequency techniques [3]. Some theoretical efforts on the 
excitations have been reported [SI. The single-particle states in quasi-ID wires in a 
longitudinal magnetic field and the associated effect of the observed damping of density of 
states oscillations have been investigated [9]. However, the collective excitations of such 
systems in the presence of a transverse magnetic field have not been studied completely 
due to the difficulty of having to solve a secular equation of infinite dimensions. In [lo] 
we proposed a general method to solve this problem, but for a qUaSi-lD system the problem 
can be solved in a rather simple way by noticing the unique feature of the ‘Fermi surface’ 
in quasi-ID geometries. Also, by varying the magnetic field strength, one can control 
the number of occupied subbands and study any designated collective and single-particle 
excitation modes. As we shall see below, in the long-wavelength limit, electrons involved 
in the collective excitations (except those in the intersubband excitations from occupied 
subbands to empty subbands) will contribute to the edge states. 
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In this paper, we study the various collective excitations in a quasi-ID quantum wire 
under a transverse magnetic field. Our main results can he summarized as follows. First, 
the applied field displaces most of the excitation modes to the edges of the quantum wire. 
Each intrasubband excitation has one mode Ihdt is localized on one of the two edges of 
the wire. The directions of the incident perturbation and the applied field determine which 
edge the plasmon is in. Intersubband excitations divide the wire into three regions. An 
intersubband excitation between occupied subbands, which was believed to be too weak to 
observe in the absence of a magnetic field, could be substantial in our case and has two 
modes with different q dependence which are localized on the two edges. The intersubband 
excitation between occupied and empty subbands has only one mode which is localized in 
the middle of the wire. Second, these magnetoplasmons show anomalous field dependences. 
In contrast to the bulk collective modes, whose squared frequency increases linearly with 
the squared cyclotron frequency, the intrasubband modes have frequencies that generally 
decreese with increasing magnetic field. If only the n = 0 subband is occupied (the so-called 
electric quantum limit), the intersubband excitation to the n = 1 subband has a frequency 
that increases with the applied field as we expect from conventional studies. However, for 
a multiple subband occupation, the intersubband excitation between occupied and empty 
subbands has a frequency that decreusef with the applied field due to the depopulation 
effect. In contrast, the frequencies of intersubband excitations between occupied subbands 
increase with the applied field. When the subband occupation is changed by changing the 
applied field, one should see the transition between two modes and one mode intersubband 
excitations. 

2. RPA in a magnetic field 

We consider a quasi-IO wire with parabolic transverse confinement. The electrons are 
confined in the z = 0 plane (a standard 2D EG) and are free in the x direction. A magnetic 
field B is applied along the z axis. The Hamiltonian is 

Single-particle eigenstates and energy eigenvalues of HO are 

qnt(e) = L-’/ze’Rx4nk~) (2) 

with 

where H. is a Hermite polynomial, and the parameters in (3) and (4) are 

h = m Z / h  yo = ( o , / Z ) 2 k l i  I ;  = hc/eB 

o, = eB/mc  ?I? = 0,” +a$ m’ = m(G/W)’ .  
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The effective electron mass m 0.07m,. Equation (3) shows that a magnetic field shifts 
the centre of the wavefunction towards the edge of the wire. Those states labelled by k 
around kp are edge states. The corresponding energy subbands are shown in the inset in 
figure 1. At zero temperature, the Fermi energy and the Fermi wavenumbers k F )  associated 
with different subband indices n can be simply determined by 

k$" = x N / 2 L  
"=a 

k:"' = ( 2 m * [ E ~  - (n + 1/2)h;j]/h2}"2 

where N I L  is the electron density of the system. To compare with experimental results, we 
need to relate WO to the width, W ,  of the quantum channel. Following [ 111, we take W = 
~ x ( ~ / ~ ) ' / 3 [ ~ / ( 3 i r m w o 0 ) 1 2 / 3 .  The full Hamiltonian of the system is N = NO + &ulomb. 

Using (2) as the basis for second quantization 

The interaction vertex is given by 

2e2 
v,,,,,,.,(k,k', 4 )  = - L S S d y d y ' ~ ~ , , k + q ( y ) ~ ~ ~ , , , ( Y ' ) K o ( q l Y  - ~ ' l ) ~ ~ , . r , ( ~ ' ) ~ ~ ~ . t ( ~ )  

(8) 

where &(x) is a modified Bessel function and eS is a host dielectric constant. Let 

(9) t t 
Pndkq = cn,k+qcn'.k. 

Then 

(10) - f i P j , , k ,  = Pnntkpl t = ( E n , k + q  - E n ' . t ) P i n , k q  + [HCoulomb, Pn,,*k,1. t 

- ifi(P,,,,,,) t = (En,t+q - E,,,..~){P,,~,,,) t + 

Applying RPA to the second term in the above equation gives 

( w . k  - nn.t*)Vn,n,nn,(k'. k + 4. q ) ( P n l n r K y )  t 
n l n k  

(11) 

where n,t = ( c A . k c f i , k )  is the average number of electrons in the subband n with momentum 
k. With a linear response to an external field with frequency w 

(12) .t t - i(pnnrkq) = d~,,,,,). 

Turning off the external field, the solutions of (11) and (12) represent intrinsic excitations 
in the system, including plasmon excitations. Thus we need to solve 
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Figure I. Intnsubbmd excitations in a quasi-lo quantum wire at B = 2 T  (two subband 
occupation). Curves marked by A and A are the excitations in the n = 0 and n 1 
subbands, respectively. The higher and lower shaded areas are the single-particle excitation 
regions wrresponding to the two subbands. The inset is the energy subband picture. 

The difficulty in extracting the excitation frequency lies in the coupling in k' between 
V and p.  In the following, we shall show that this can be avoided in the long-wavelength 
limit, using the peculiar property of quasi-ID Fermi surfaces (only two points, see the inset 
of figure 1). 

Multiplying (13) by K~(q1y" - ~ ' l ) ~ : , ~ ~ ~ ( y ' ) ~ " , , t ( y ' )  and integrating over k and y', we 
obtain 

where 

Noticing that the polarization factor in  (14) is non-vanishing only around the two Fermi 
edges (the shaded areas A and B in the inset of figure l), one can complete the integral 
over k in the long-wavelength limit (q << kt), k?)): 
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Figure 2. lntembband excitations at B = 2T. Curves marked by and 0 are the two modes 
between the n = 0 and n = 1 subbands. The mode corresponds Lo region B and the o mode 
corresponds to region A in the inset of figure 1, The cunie marked by A is the excitation between 
the n = I and n = 2 subbands. The shaded areas are the single-particle excitation regions with 
the higher one between then = 0.1 subbands and ~e lower one between the n = 1.2 subbands. 

where 

a d  i~ = ,,A:“’ + &“‘)). Multiplying (16) by @;,,kr(~”)@n,~F+J) , $;z,-+(~”)4n,-ip+q 
(y”) respectively, and integrating over y“, one obtans, for non-vanishing denslty fluctuation, 
the following secular equation: 
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where, noticing that 4 are real, 

H L W m  et ai 

A,,,(q) * = - rre,h 2e2 SSdydy'4",i,+4(yf)4",,i,(Yi)Kb(q1Y - Y ' I ) ~ " , , ~ ~ + , ( Y ) ~ , , , ~ ~ ( Y ) .  
(19) 

In doing this, we have neglected the coupling between the subbands, n,n', and others 
(terms with m # n and m' # n' are generally smaller because of the orthogonality of base 
wavefunctions). To simplify our notation, we write At(q) = A:,,,(q) and AZ(q) = A,,(q). 
The solution of (18) is 

Equation (20) is the magnetoplasmon frequency for intrasubband excitations when n = n', 
and for intersubband excitations between occupied subbands when n > n'. For the 
intersubband excitation from an occupied subband (n') to an empty subband (n), the 
approximation we used in evaluating the integral over k in (14) is not valid. In this case, 
only one Fermi distribution function appears in (14), which implies that all electrons in 
the subband n' are involved in the excitation to the empty subband n. One can give a 
rough estimate of the excitation frequency in the long-wavelength limit (k$")q << "5) by 
evaluating the integral in (14) with k = = k 2 ' / 2  in the integrand. This gives 

w % ( n  - n')5 + 2A1(q)kF7. (21) 

Numerically calculated dispersion curves are shown in figures 1 and 2. The various 
parameters were chosen for a typical quasi-ID quantum wire cut from GaAs/AI,Gal-,As, 
with W - 0.1 pm, N / L  - 2.3 x 106cm-' ( h w  % 1.77meV) and cs - 13. We take the 
magnetic field to be B = 2 T  (ha, % 3.3 meV), at, which the two subbands are occupied. We 
then obtain kAo) % 2.24 x 106cm-', kL1) FV 1.36 x 106cm-' and EF w 2.09hG FV 7.8meV. 
The intrasubband excitations (for subbands 0 and 1) and the intersubband excitation between 
the two subbands are calculated by (20). The intersubband excitation mode between n' = 1 
and n = 2 is calculated from (21). The single-particle excitation regions (shaded area), 
where plasmon excitations are damped, are determined by the condition that the imaginary 
part of (14) is finite when replacing w by w + iq and letting IJ -P 0, i.e. 

which gives 

for intrasubband excitations and 

for intersubband excitations from n' to n 
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3. Discussion 

We now discuss, in physical terms, the following three features of the dispersion curves. 

leading term of the excitation mode of the nth subband, as q --f 0, scales as 
(i) Intrasubband excitations (n = n‘) show an acoustic-like dispersion as q + 0. The 

with qo - fi, the inverse of the wire width. Notice that the coefficient in front of q 
decreases with increasing field. Since !$) < k y )  for n > n‘, the excitation frequency 
becomes smaller for subbands with higher indices n, as shown in figure 1. In the long- 
wavelength limit (small q). intrasubband modes can be excited only around one of the two 
Fermi edges (regions A or B in the inset to figure 1). For q > 0, there are states available 
in region B for intrasubband excitation, but no intrasubband excitation can be detected in 
region A since all destination states are occupied. In the presence of a magnetic field, the 
states around Fermi edges are displaced to the two edges of the quantum wire, states around 
+@) to the upper edge (y > 0 side) and states around 4;) to the lower edge (y < 0 
side), i.e. the edge states [7]. Therefore, by applying a magnetic field perpendicular to the 
wire, a spatial asymmetry is introduced. For q > 0, the intrasubband excitations will appear 
at the upper edge (y > 0) of the wire, while no intrasubband excitation occurs at the lower 
edge (y < 0). Changing the sign of q or the field direction reverses the spatial distribution 
of these excitations so that the intrasubband modes will appear. at the lower edge of the 
quantum wire. 

(ii) For intersubband excitations between occupied subbands with n‘ > n, both solutions 
in (20) are negative and should be discarded. For n‘ < n, however, we obtain hvo solutions 
corresponding to the two Fermi edges. The two modes between the subbands n = 0 , l  have 
different q dependences; one increases with q,  the other decreases with q .  This can also be 
understood physically from the inset of figure 1. As q + 0, we obtain 

which confirms that only electrons in regions A and B in the n = 0 subband are involved 
in excitation between the n = 0 and n = 1 subbands. The gap at q = 0 is due to the 
coupling between the upper-edge mode and the lower-edge mode. Both the frequency and 
intensity 1121 of an intersubband excitation depends sensitively on the number of electrons 
involved in the excitation, namely the more electrons participate in the excitation, the higher 
are the excitation frequency and intensity. For intersubband excitation between the n = 1,2 
(occupied and empty) subbands, as we see from the inset of figure I ,  all electrons in the 
n = 1 subband are involved in excitation from the n = 1 to n = 2 subbands. As q + 0, 
we obtain from (21) 

(27) 

with y being a constant of order unity. From these discussions we see that, in the presence 
of a magnetic field, the electrons participating in intersubband excitations are effectively 
divided into three spatially separated parts for the case of two subband occu ation, namely 
those at the two Fermi edges of the n = 0 subband (with density - k, - @)) and Po, 



1692 

those of the n = 1 subband (with density - !@). If the applied field is adjusted so that 
k!) sx 2 .-- 3@), i.e. the number of electrons involved in the three intersubband modes are 
comparable, one should be able to see all three intersubband modes. Here we emphasize 
the importance of the parabolic confining potential of the quantum wire. If the potential 
is flattened over a large region inside the wire, then the electrons involved in intersubband 
excitations between occupied subbands (e.g. n = 0. 1) will be much less than those involved 
in intersubband excitation between occupied and empty subbands (e.g. n = I ,  2). In this 
case, the intersubband mode between the last filled subband and the first empty subband 
will dominate the excitation spectra, since the intensities of the other intersubband modes 
are much smaller. For qUaSi-lD quantum wires obtained on a split-gate GaAs/AI,Ga,-,As 
heterojunction, it has been shown that the gate voltage can actually change the effective 
potential between a parabolic and a flattened potential profile [13]. 

H L Zhao et a1 
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Figure 3. Field dependence of excitation frequencies at q = 10scm-’, Curves marked by A 
and A are the invasubband excitations in the n = 0 and n = 1 subbands, respectively. Curves 
marked by t are the two modes between the n = 0 and n = I subbands. Curves marked by 
are the intersubband excitation between the n = 1 and n = 2 subbands. The inset is the 

dependence of the excilalion frequency between then = 0 and n = 1 subbands on !he magnetic 
field over B wider mge. 

(iii) Figure 3 shows the magnetic field dependence of the various excitation modes at 
q = le cm-*. The intrasubband frequencies are not very sensitive to the field variation; 
they generally show a decreasing tendency with increasing E ,  in agreement with the edge 
magnetoplasmons calculated previously from a hydrodynamic model [14]. Such behaviours 
have been verified by experiments in [Z]. The intersubband excitation frequencies between 
occupied subbands (n = 0 , l )  increase with the field due to the increase of Z, as seen 
from (26). The intersubband excitation between occupied and empty subbands (n = 1,2) 
decreases with increasing field as a result of the depopulation effect (reduction in k;’)) from 
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the n = 1 subband, which dominates in (27). This single intersubband mode will split into 
two modes when the field is sufficiently lowered such that the n = 2 subband starts to 
be occupied. The split modes show a similar field dependence as the intersubband modes 
between the R = 0. 1 subbands. The inset in figure 3 shows the field dependence of the 
intersubband excitation from n = 0 to n = 1 in a wider field range. Again there is only one 
mode when the field is increased so that the n = 1 subband becomes completely depleted. 
But this single mode increases with increasing field, in contrast to that from the n = 1 to 
n = 2 mode. This is because there is no depopulation effect in the n = 0 subband, while L5 
increases with increasing field. Changing the electron density in the system while fixing the 
magnetic field would have the same effect as fixing the electron density while decreasing 
the applied field for a multiple subband occupation. We expect that the curves of frequency 
against electron density will be similar to figure 3. Nevertheless the degenerate mode in 
the inset of figure 3 will increase with increasing electron density (thus increasing k;)), so 
that curves in the new inset will be similar to those between the n = I ,  2 subbands. 

We conclude by briefly discussing the experimental situation. Both intrasubband and 
intersubband plasmon excitations have been observed experimentally. Dispersion curves 
calculated here are similar to those observed in the absence of a magnetic field [l], i.e. 
the intrasubband excitation frequency grows like q(ln q ) ' / *  and the intersubband excitation 
frequency shows almost no dependence on q. Complete dispersion curves in the presence 
of magnetic fields are still not available. Perhaps more interesting is the field dependence of 
excitation frequencies. Contrary to intuition, the ineasubband plasmon frequency decreases 
with increasing field. This behaviour has been observed in experiment [Z]. The intersubband 
plasmon frequency were found to increase with the applied field [1,2]. The decreasing 
intersubband branch in figure 3 was not observed. Probably this is because it has an energy 
higher than those accessible by the far-infrared radiation technique. However, there are 
traces of the depopulation effect in [ Z ] ,  i.e. one intersubband mode disappeared as the field 
increased. 
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